Complex Number 1

1. Given that $\sqrt{z} = \frac{2}{1-i} + 1 - 2i$, express the complex number z in the form x + yi.

- 2. Calculate, in the form a + ib, where $a, b \in R$, the square root of 16 30i.
- 3. Express the complex number $z = \sqrt{3} i$ in its polar form. Hene, find $z^6 + \frac{1}{z^6}$ and $z^6 \frac{1}{z^6}$.
- 4. If z = 1 + 2i is a root of the equation $z^4 z^3 + 4z^2 + 3z + 5 = 0$, express $z^4 z^3 + 4z^2 + 3z + 5$ as a product of two quadratic factors. Hence, find the complex roots of the equation $z^4 z^3 + 4z^2 + 3z + 5 = 0$.
- 5. Solve the equation $z^5 + 32 = 0$.